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Abstract: Deep learning has broad applications in imaging through scattering media. Polariza-
tion, as a distinctive characteristic of light, exhibits superior stability compared to light intensity
within scattering media. Consequently, the de-scattering network trained using polarization is
expected to achieve enhanced performance and generalization. For getting optimal outcomes in
diverse scattering conditions, it makes sense to train expert networks tailored for each correspond-
ing condition. Nonetheless, it is often unfeasible to acquire the corresponding data for every
possible condition. And, due to the uniqueness of polarization, different polarization information
representation methods have different sensitivity to different environments. As another of the
most direct approaches, a generalist network can be trained with a range of polarization data
from various scattering situations, however, it requires a larger network to capture the diversity
of the data and a larger training set to prevent overfitting. Here, in order to achieve flexible
adaptation to diverse environmental conditions and facilitate the selection of optimal polarization
characteristics, we introduce a dynamic learning framework. This framework dynamically adjusts
the weights assigned to different polarization components, thus effectively accommodating a
wide range of scattering conditions. The proposed architecture incorporates a Gating Network
(GTN) that efficiently integrates multiple polarization features and dynamically determines the
suitable polarization information for various scenarios. Experimental result demonstrates that
the network exhibits robust generalization capabilities across continuous scattering conditions.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Deep learning has become one of the important methods for solving complex imaging through
scattering media [1–3]. In comparison to commonly used light-intensity images, polarization,
being a stronger stability of light attributes in scattering media, plays a pivotal role in imaging
through scattering media [4–6]. Utilizing polarization information enables imaging or detection
capabilities that go beyond the reach of light-intensity information in specific environments like
underwater [5,7,8], biological tissues [9–12], atmosphere [13,14], and so on [15,16]. Thanks
to the rapid developments of deep learning algorithms driven by polarization datasets, which
have also emerged and shown extraordinary results. Leveraging the unique properties of
polarization, these algorithms exhibit outstanding performance and heightened stability in fields
including underwater imaging [17,18], dehazing [19], denoising [20–22], etc. The integration of
polarization datasets into deep learning frameworks shows their potential to enhance outcomes
and improve generalization. Deep learning based imaging, not only needs to perform high-quality
imaging of different targets under a single scattering condition, but also needs to extend the scope
of application to a wider range of scattering environments. This is the pursuit of a greater degree
of one-to-many scenario adaptability, that is, accommodating more scenarios and variables
within a given environment. Although many methods have been proposed [23–25], they can only
show optimal performance when the scattering conditions in the test data match the training data
well. Therefore, in order to optimize such Expert Networks (EN), the availability of training data
needs to have sufficient prior knowledge of scattering media and sufficient stability within the
scattering environment. Polarization information exhibits distinctive stability within scattering
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media, but there is a pertinent challenge lies in effectively selecting polarization features allowing
the input feature to maximize the characterization of different scattering environments and targets’
prior knowledge. For instance, in the research [26], various polarizations were analyzed using
different pipes to attain complete effective characteristics. Although the final experimental
outcomes demonstrated good performance in the same environment, the reconstructed results for
different-material targets still had some challenges. Another approach is to train a single generic
network (GN) with a larger dataset containing different scattering conditions. However, this
approach is generally less performant due to the need to extract generalizable features in different
scattering situations [2,27]. What’s more, polarization cannot be directly detected, necessitating
the adoption of various expression methods to characterize polarization information. Like the
commonly used Stokes vector, Jones vector, and the indices of polarimetric purity (IPPs) [9,11,12]
based on the Muller Matrix (MM). These methods enable the quantification and representation
of polarization attributes in a reliable and meaningful manner. However, it is important to note
that different expression methods exhibit varying degrees of sensitivity to different scenarios and
objectives, which makes the most suitable polarization characteristics different for different scenes
and different targets. For instance, Stokes vectors tend to offer a comprehensive representation of
polarization states [28,29], and Jones vectors are particularly advantageous in situations where
precise control over the polarization state is required [30]. Most of the existing data-driven
methods using polarization datasets usually directly use (0°, 45°, 90°, 135°) as datasets [31]
and other methods use specific parameters or combinations of parameters within the Stokes
vector as datasets [24,32]. While by inputting the multi-dimensional polarization dataset, the
information dimension will be increased and the feature expression can be enhanced, in which
it is important to consider the issue of information redundancy and its associated overfitting.
In addition, we cannot guarantee that existing representations are optimal for all scenarios and
targets. Furthermore, incorporating targeted and advanced structures into the network model
serves as a crucial approach to enhance the generalization capabilities of the model [24,33].
However, it is essential to consider that excessively large models present a significant challenge
in terms of computational resources. Therefore, considering these limitations, in this paper,
we propose a dynamic polarization fusion network (DPFN) to select polarization information
to adapt to the imaging needs of multiple scenes, so as to realize the effective selection of
polarization features to cope with different scattering scenarios and ensure the generalization of
the network framework to a wider range of scenes while achieving high-quality imaging.

Our work is inspired by the framework of the mixture of experts (MoE) [34,35]. The unique
properties of our DPFN include multiple polarization feature representations of the inputs
and dynamic adjustment of fusion parameters, both of which are adjusted simultaneously to
achieve scene-specific feature selection. The DPFN also alleviates the limitations of model
switching between fixed expert DNNs, which makes DPFN more versatile and scalable. The
DPFN is capable of synthesizing features in continuous, high-dimensional feature spaces to
provide optimal performance under different scattering conditions. The DPFN’s adaptability
stems from the interaction between the Gating Network (GTN) and the Deep Neural Network
(DNN) combination of polarization experts. Each EN in the DPFN extracts certain polarization
features to provide different input representations. According to the guidance of centralized
target features and the feedback of the training process, the GTN dynamically and intelligently
fuses the extracted features, to synthesize the feature representation suitable for the current input.
Finally, the target information is restored by the decoder. We verify the effectiveness of our
proposed method through different validation experiments and ablation experiments and provide
the possibility to realize the use of a single DNN architecture under a wide range of scattering
conditions. Here, we selected the scattering environment of a milk-water mixture (by adding 7-10
ml milk into water tank) as a representative example to validate the effectiveness of our method.
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The structure of this paper is arranged as follows. Section 2 introduces the physical basis
and the principles of the framework and the network design of our proposed method. Section 3
presents experimental results and discussions. Finally, in Section 4, we summarize our work.

2. Theory and methodology

2.1. Polarization information

Polarization characteristics refer to the asymmetric properties exhibited by the direction of
vibration perpendicular to the propagation direction. In order to facilitate the analysis and
utilization of polarization information, researchers have been actively investigating various
representations of polarization, including the Stokes vector, Jones vector, and IPPs. These
representations enable a more comprehensive and precise characterization of polarization
properties, allowing for advanced applications in the field of polarization optics. By employing
a polarizer positioned in front of the detector, the current detection methodology enables the
measurement of polarization information at specific orientations, including 0°, 45°, 90°, and
135°, among others. Subsequently, the obtained data from these measurements is utilized to
calculate essential parameters such as the Stokes vector [28] (Eq.1) and Degree of Polarization
(DoP), etc.
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In Stokes vectors, S1 is the total light intensity; S2 is the difference between horizontal and
vertical components; S3 is the difference between 45° and 135° components, and S4 is the
difference between right-handed and left-handed components. Given the limitations of current
detectors, direct acquisition of circular polarization information is not feasible. Therefore, our
analysis primarily focuses on linear polarization instead. Then, the degree of linear polarization
(DoLP) represents the ratio of the linear polarization component to the total light intensity:
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, (2)

The angle of polarization (AoP) of the linear polarization can be expressed as:
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1
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After extensive research in the field of polarization information, it has been observed that
different representations of polarization information can capture distinct aspects of target
characteristics. For instance, S1, one of the parameters in the Stokes vector, can effectively
mitigate backscatter interference [29], while DoLP can offer detailed target characteristics [36].
Furthermore, the MM’s elements correspond to distinct physical properties of the target [37].
Consequently, it becomes imperative to judiciously select the appropriate polarization feature
or a combination of multiple polarization characteristics, based on the specific environmental
conditions and unique attributes of the target being analyzed. This selection process is fundamental
in enhancing the accurate portrayal and understanding of the target’s intrinsic information. Hence,
in this article, we attempt to employ a suitable framework to facilitate an effective selection of
polarization characteristics.
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2.2. Measurement system

Currently, publicly available polarization datasets for broad utilization are limited. Therefore,
we have established a specialized setup within a controlled laboratory environment to capture
underwater polarization datasets. The acquired underwater polarization data obtained from DoFP
validate the efficacy of our proposed methodology. Figure 1 illustrates a schematic diagram of
the setup employed in this study. To achieve precise control over the captured target information,
we systematically introduce varying quantities of milk into the water. We use a transparent
glass container measuring 340 mm x 190 mm x 140 mm to hold the clean water. To minimize
the effects of ambient light interference, black shields are affixed to three side walls and the
bottom of the glass tank. For active illumination, an LED light source is selected, with a linear
polarizer situated in front of it, generating horizontally polarized light (S= (1, 1, 0, 0)T ) [38]. To
capture pixel-level corresponding underwater object datasets, we utilize a set of building blocks
as the bed plate and supporting connectors fixed onto the bed plate. The targets are affixed to
these connectors, thereby ensuring their precise positioning and providing a physical basis for
subsequent acquisition of pixel-level corresponding datasets.

Fig. 1. Experimental setup.

We systematically capture label images and blurry images in both clear and murky water
environments following a consistent sequence. To create a multi-concentration underwater
polarization dataset, we acquire fuzzy polarization images under controlled conditions using an
increasing concentration of milk-water mixture at a predetermined scattering imaging distance
(SID), that is, d= 9 cm. Additionally, we have analyzed the scattering and absorption coefficients
of prepared milk-water mixtures [39], and it exhibits a relatively higher scattering coefficient
and lower absorption coefficient. In such an environment, the characteristics of the targets’
information can be retrieved well after it transfers a long distance, so the target information can be
reconstructed by our proposed method. The target is made mostly of iron. We use the commercial
DoFP (division of focal plane) polarization camera (LUCID, PHX055S-PC) with pixel counts of
2048× 2448 to capture images, which placed four polarizers in front of the detector. So, we need
to separate four different polarization orientations of 0°, 45°, 90°, and 135° respectively, in which
the size of each polarization image is 1024× 1224. Then the corresponding Stokes vector is
calculated by Eq.1. We take 110 groups of polarization images at every milk concentration, each
group with four polarization directions (0°, 45°, 90°, 135°). In addition, we expand every set of
them to 2000 to get the training set. The input image size of the neural network in our study is
limited to 256× 256 pixels due to hardware memory constraints and limitations in computational
power required for training neural networks.
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2.3. DPFN framework

In order to achieve an effective selection of polarization characteristics, we design a DPFN,
the specific structure of which can be found in Fig. 2. In our study, we demonstrate the utility
of our DPFN framework in restoring invisible targets in turbid water. Among the available
polarization features, we carefully handpicked three features, S0, S1, and DoLP, which possess
relatively distinct characterization significance, to serve the purpose of removing scattering
effects while also considering computational efficiency. The input to the network is the picture
of polarization affected by turbid water, each corresponding to a polarization expert network
(PEN). The DPFN is trained to select the appropriate high-dimensional features from the input
multi-dimensional polarization picture to fuse to achieve the high-quality recovery of the target
information. Firstly, each branch encoder independently extracts a set of multiscale feature maps
from the corrupted input. Since each polarization representation focuses on the expression of the
target information differently, the combined feature mapping set provides feature representations
of different dimensions for removing scattering effects to restore the target. To intelligently
utilize these multiscale features to process arbitrary scattering conditions, the GTN is used to
reason about the predicted fusion weights to calculate the linear weighted sum of the extracted
feature maps. This operation can effectively optimize the feature map to obtain a more general
representation under different scattering conditions. Finally, the synthesis features of the encoder
are processed by a decoder to achieve the recovery of the target.

Fig. 2. The schedule of proposed DPFN.

The GTN provides a synthetic method for dynamic fusion by predicting weights. These
weights serve as coefficients for the polarization features generated by the PEN. To do that,
we design a GTN that extracts centralized target features from the Fourier transform image
of a matched fuzzy image, and then generates three coefficients, namely {α1, α2, α3}, which
collectively sum up to 1. In the GTN, we leverage the Fourier transform image of the fuzzy target
image as input to enhance the precision of target information during weight generation. The
Fourier transform feature of an image characterizes the gradient changes in the image pixels
and captures target features at the frequency domain level. Notably, the overall characteristics
of the transformed image remain relatively consistent across different scattering conditions, as
shown in Fig. 3. This characteristic information that centralizes the expression of differences is
useful for guiding the generation of fusion weights. The GTN performs a comprehensive analysis
of the input Fourier information. It can adaptively blend features extracted by expert encoders
and can stably adapt to different scattering scenarios due to its unique properties. Improve the
stability and adaptability of the overall framework. During training, all polarization feature expert



Research Article Vol. 32, No. 1 / 1 Jan 2024 / Optics Express 516

encoders, and decoders in DPFN are trained with GTN. In this way, GTN learns how to optimize
polarization characteristics for different underwater scattering effects.

Fig. 3. Fourier transform of intensity images at different concentrations. (a) 8 ml; (b) 9
ml;(c) 10 ml.

2.4. Network design

The backbone network of the PEN, as shown in Fig. 2(b), is based on our previous work
[24]. Since the polarization information itself belongs to high-latitude information, the existing
detection method can only be expressed in a two-dimensional way. As a result, we incorporate
sampling layers of varying sizes within the backbone network to extract polarization features at
different scales. This facilitates a multi-scale and high-dimensional analysis for comprehensive
extraction of polarization information. Subsequently, the extracted multi-scale information is
integrated by a self-attention mechanism (SAM). The SAM enables the aggregation of effective
polarization features by establishing interactions among feature information across different
channels and the most useful features for the final goal recovery will be given higher weights
[24,40]. The overall feature extraction part is composed of dense blocks, and the down-sampling
is realized by the 2× 2 max-pooling. In the multi-scale module, features are processed into
different scales by down-sampling of different sizes, and the high-latitude extraction of features
is realized by 3× 3 convolutional layers.

The GTN follows the VGG structure [41] to predict the synthetic weight αi, which is shown
in Fig. 2(c). Among them, the convolutional layer with a convolution kernel of 3× 3 is used,
and the max pooling layer with a size of 2× 2 is used. The synthetic weights are used to blend
features extracted from three polarization expert encoders. The final decoding part is still to use
dense blocks to analyze the high-dimensional synthetic features, then use up-sampling to restore
the features, and finally output the image results of 256× 256. The activation function employed
in the network structure is a rectified linear unit (ReLU). The overall parameter and FLOPs of
DPFN are 23183.57 M and 1.65 M respectively. In our work, we use the Mean squared error
(MSE) as the loss function to drive the interaction of polarization features within the network.

MSE =
1

MN

m−1∑︂
i=0

n−1∑︂
j=0

[G(i, j) − P(i, j)]2, (4)

where P(i, j) represents the pixel of the reconstructed image, G(i, j) represents the pixel of the
original target, and M and N represent the size of the image.

We trained the model in an image processing unit (NVIDIA RTX 3090) using a Pytorch
framework with Python 3.6. To get the best optimal model, we trained 200 epochs. The optimizer
is the Adam (Add Momentum Stochastic Gradient Descent) with a learning rate of 0.0001.
Meanwhile, we train the model in the computational environment that Windows Server 10
(Version 21H1) Intel Core i7.9750 H CPU @2.60 Hz 2.59 GHz, and 16.0 GB of RAM, after
training the DPFN just requires about 0.03592s for reconstructing a new test image.

2.5. Imaging quality

In this paper, to assess the quality of the output of the network, we adopt several evaluation
metrics, i.e., Pearson Correlation Coefficient (PCC) and Peak Signal-to-Noise (PSNR) [42]. The
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PCC with the value between 0-1, is a way to measure the similarity of images. It can be expressed
as [43]:

PCC =

w∑︁
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h∑︁
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2

, (5)

where P(i, j) represents the pixel of the reconstructed image, G(i, j) represents the pixel of the
original target, G1 and P1 represent the mean of the original target and the network reconstruction
image respectively, and M and N represent the size of the image. The PSNR is defined as:

PSNR = 10 × log10
MAX2

MSE
, (6)

where MAX is the maximal value in the image.

3. Results and discussions

During the training process, both the expert encoders and decoder and the GTN are trained
together. The training set consists of several underwater polarization datasets that contain varying
degrees of scattering. Specifically, a series of polarization data sets were obtained by adding 7
ml, 8 ml, 9 ml, and 10 ml of milk into clean water to create a continuously tunable scattering
environment. During training, corresponding Fourier transform diagrams are fed into the GTN.
We initialized all the expert encoders, decoder, and the GTN with random weights and trained
the optimal model.

3.1. Performances of the DPFN

3.1.1. Different targets

In this section, in order to verify the effectiveness of DPFN, we conduct tests on different targets
which all are not included in the training set (the scattering environment is the same as the
training set), and there are two types of testing targets, the same type as the training set (not
seen in the training set) and the different types from the training set (Alphabetical targets and
Chinese character targets). Both types of test images are captured in the same experimental
environment as the training set. The model’s test results are presented in Fig. 4 (We only show
the results of the scattering of the maximum concentration in the training set, i.e. 10 ml of milk,
in order to refine the results with pronouncement). For the results of the same type as the training
set, there is no doubt that they are complete and excellent. Not only that, but the test results of
different types from the training set are also excellent. Even Chinese character characters with
significantly higher complexity than the training targets can still be fully recovered with high
contrast. Based on the results, it concluded that DPFN can effectively recover different types of
targets that are not in the training set.

Fig. 4. The results of different types of targets recovered by DPFN.
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In addition, we calculated the corresponding evaluation indicators. From Table 1, our recovery
results are more than 80% similar, and the PSNR is also satisfactory. This shows that our method
can not only reconstruct the target with high quality but also does not carry excessive additional
noise.

Table 1. The average PCC and PSNR of the different types of targets

Unseen targets Alphabetical targets Chinese character targets

PCC 0.8529 0.8388 0.8175

PSNR 14.5494 14.6446 13.8806

3.1.2. Compare with EN and GN

In order to further analyze the characteristics of the proposed framework that is more stable, we
trained the EN and the GN separately (the training set is the same as the DPFN). The EN is
trained with 3D data (including S0, S1, and DoLP), obtained under the scattering environment
of 10 ml of milk, as a training set. The GN is trained by multi-concentration data in different
polarization representation methods (S0, S1, DoLP, separately). The network structure used by
both EN and GN is composed of expert decoders and decoders as shown in Fig. 2(b) and Fig. 2(c)
respectively. The test data are obtained by increasing the milk concentration starting from 10 ml
milk as a baseline, and the test target never appeared in the training set. As depicted in Fig. 5, the
results under different scattering conditions can be seen. The EN works best for concentrations
that are closest to the training set. As the concentration increases, the target result becomes
unrecognizable. Despite inputting multi-dimensional polarization information, and based on the
stability of the polarization information, the expert model lacks a comprehensive and rational
analysis of polarization characteristics beyond the scattering concentration range covered by
the training set. The performance of GN is influenced by both the quality of the data and the
architecture of the networks. Therefore, in limited circumstances, the GN does not produce better
results. From Fig. 5, when polarization information is incorporated into the training set, it is
observed that GN exhibits improved performance. However, its stability is particularly poor,
which suggests that improving the generalization of GN requires more data and the ability to
generalize the characteristics of the corresponding networks.

Fig. 5. The schedule of the results from EN, GN and the proposed DPFN.

Notably, the test results of the DPFN model are shown in Fig. 5, compared with the above
traditional training methods, our results not only have high-quality and high-contrast imaging
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results but also have strong stability. Specifically, even at 15 ml of milk concentration, it is still
possible to recover a target that is identifiable and distinguishable. At 13 ml of milk, the EN
and GN are no longer able to reconstruct the target, while our method is still able to achieve
high-quality imaging without distortion of the target itself. In addition, from the evaluation
indicators in Table 2, it can be seen that all the results of our method can reach a similarity of
more than 70%, and the value of the PSNR is higher than that of other methods. Furthermore, it
is worth noting that the overall numerical level of the results remains relatively stable throughout
the experiments, without exhibiting any abrupt or drastic declines.

Table 2. The average PCC and PSNR of the different training methods within continuously tunable
scattering environments

10ml 11ml 12ml 13ml 14ml 15ml

EN
PCC 0.6717 0.6607 0.6038 0.5415 0.4102 0.3737

PSNR 12.4446 12.2671 11.7323 11.1494 10.1712 9.8527

GN-S0
PCC 0.6562 0.5319 0.4130 0.4130 0.3274 0.2466

PSNR 11.7566 10.2889 9.2960 9.4137 9.0605 8.8130

GN-S1
PCC 0.7198 0.6774 0.5980 0.4854 0.4305 0.4013

PSNR 12.7452 12.0436 11.3043 10.0116 12.4979 9.1861

GN-DoP
PCC 0.7547 0.7365 0.7107 0.6563 0.5760 0.5601

PSNR 13.1379 12.9723 12.5195 11.8034 10.8383 10.6590

Ours
PCC 0.8682 0.8375 0.7969 0.7243 0.7086 0.6989
PSNR 15.7714 13.9905 13.7269 12.7352 12.0718 11.9817

3.2. Performances of DPFN on adapting to a wide range of scattering conditions

3.2.1. Effects of GTN

The starting point for our proposed framework is based on effectively integrating polarization
characteristics to enhance adaptability to a broader range of scattering environments. So, in
this section, we investigate the adaptation of our framework to handle additional scattering
environments, and we conduct ablation experiments to validate its necessity. To do that, we
train two models, which have dynamic fusion parts and non-dynamic fusion parts, named DFF
and NDF, respectively. We obtain a series of targets with different types of images from the
training set under scattering conditions that differ from the training scattering conditions to obtain
polarization scattering images as the test data. We mainly obtained the test set in a more intense
scattering environment, i.e. adding more volume of milk than training to the water. Then we
input the test data into the DFF and NDF to get the recovery result, as shown in Fig. 6(c) and
Fig. 6(a).

The experimental results demonstrate that the DFF is relatively more stable when dealing
with a series of continuous scattering environments. Moreover, the reconstructed images exhibit
completeness without excessive background noise. The NDF already has fringe-like noise when
12 ml of milk, and the subsequent results are incomplete, even unable to recognize the target
shape. From Table 3, it can be seen that the DFF has higher values of similarity and PSNR
than the NDF, and the change of them is more stable. These highlight that it is very effective to
generate scenario-specific weights through the GTN, resulting in a significant 50% increase in
the generalization capability beyond the maximum concentration of training conditions.

In addition, we output the results of the middle part of DFF and NDF, which poured milk
is 12 ml (because at this point the results of the comparison start to change a lot), visualizing
the dynamic fusion part of DPFN, as shown in Fig. 7. It can be seen that the intermediate
output of NDF has low feature richness and most of the details are missing compared with the
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Fig. 6. The result was recovered by different models.

Table 3. The average PCC and PSNR of the different models

10ml 11ml 12ml 13ml 14ml 15ml

No Dynamically Fusion-NDF
PCC 0.7844 0.7579 0.7154 0.6803 0.5050 0.4176

PSNR 12.8924 12.7881 12.7201 12.2486 10.4414 9.7618

Dynamically Fusiona -DFD
PCC 0.8387 0.8054 0.7834 0.7159 0.5973 0.5088

PSNR 14.9852 13.7371 13.7447 12.5998 10.2829 10.0987

Dynamically Fusionb -DFF
PCC 0.8682 0.8375 0.7969 0.7243 0.7086 0.6989
PSNR 15.7714 13.9905 13.7269 12.7352 12.0718 11.9817

Dynamically Fusionc -DFFD
PCC 0.8661 0.8134 0.7909 0.7203 0.6002 0.5567

PSNR 13.2551 13.3929 14.0737 12.0134 11.3609 10.1876

aThe AoP-based dehazing images are input into GTN.
bThe FFT images are input into GTN.
cThe AoP-based dehazing images and the FFT images both are input into GTN.

middle output of DFF. The significant differences between the test and training sets make it
challenging for the EN model to adapt to these variations. Although direct feature fusion can
increase the feature expression, it is still insufficient in addressing the changes in the environment
and compensating for the quality of subsequent reconstruction. DFF is optimized simultaneously
due to the interaction of expert decoders and the GN. Due to the stability of the polarization
information in the scattering media, the optimization of EN can capture generalized polarization
features in different scattering environments, and it can be known from our previous work
[23]. Then, the GTN can generate suitable weights according to different scattering conditions
to fuse polarization features extracted by the EN. These make it possible to prepare features
of the decoder, which, despite the increased scattering difference, still has rich features for
reconstructing the target (The output of the middle part of the network during concentration
increase will be discussed later.).

3.2.2. Effects of FFT

A key point of our proposed DPFN is its capacity to process polarization features extracted by
EN with appropriate weights for different environments. Therefore, in addition to optimizing
the weight generation through the feedback of the loss function during training, the quality of
weight generation can also be improved by selecting suitable data input for GTN. So, in this
section, we discuss choosing a data type suitable for guiding weight generation. As weight serves
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Fig. 7. The middle out of NDF and DFF.

to guide the effective fusion of polarization features, it is critical to leverage information that
highlights target features to guide polarization features toward a fusion direction more conducive
to accurate target reconstruction. The network parameters are also updated and optimized in the
direction more suitable for polarization features.

First, we use an AoP-based dehazing method to process the image as the input of the GTN,
which is an algorithm with a better effect on turbid scattering [44]. This method aims to directly
generate the available target features as input, thereby facilitating the generation of effective
fusion weights. In addition, we use a direct processing method, that is, using Fourier transform
to process the image as the GTN input. This approach aims to unify target characteristics by
centralizing the relevant features, ultimately facilitating the effective generation of fusion weights.
We use two methods to train the model to get dynamic networks based on dehazing data and
dynamic networks based on Fourier features, named DFD and DFF. Test images obtained under
the scattering media with continuously increasing concentrations are input to both models. The
results are shown in Fig. 6(b) and Fig. 6(c). The image data after dehazing treatment will show
obvious target characteristics to a certain extent, and serve as a GTN input target priori to guide
the weight that is conducive to reconstructing the target. Nevertheless, it is important to note that
dehazing algorithms, including. the one used in our study often relies on parameter estimation.
The accuracy of parameter estimation plays a crucial role in determining the final dehazing
result. However, as the degree of scattering increases gradually, the risk of estimation failure
also becomes more prominent. Therefore, using this type of data as input to the GTN works
well in a small range, as shown in Fig. 6(b), but when the concentration increases, the effect
begins to drop sharply and cannot adapt to a wider range of scattering conditions. Furthermore,
we employ the Fourier transform to directly process the image intensity and feed it as input to
GTN. The transformed image expresses target features in a unified manner at the frequency
domain representation, thereby facilitating effective guidance for weight generation, with the
grayscale value representing the amplitude, and the distance from a certain point to the center
representing the frequency. Even with different scattering concentrations, the Fourier transform
image has a certain uniformity, from Fig. 3, which can be understood as a kind of generalization
representation of the target prior. Therefore, the use of Fourier features can better guide the
fusion of polarization features to adapt to different scattering scenarios, from Fig. 6(c). When
the concentration of the milk increases, DFF can still maintain relatively stable imaging, and
up to 15 ml of milk, it can still reconstruct a result sufficient to identify the target. In addition,
from the evaluation indicators calculated in Table 3, on the whole, DFF has a more satisfactory
value than DFD in a wider scattering environment in the future. Finally, we use the images of
two processing methods with different emphases as input to the GTN, named DFFD, and the
results are shown in Fig. 6(d). It can be seen that this method does not improve the imaging
quality due to the input of more data, which also shows that the concise data feature expression
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method is more suitable for guiding weight generation. From the evaluation data in the Table 3,
The DFFD has better performance when the scattering degree is small, but when the scattering
degree increases, the similarity of imaging effects decreases sharply. This also justifies our use
of Fourier characteristics from the side.

In order to more clearly illustrate the rationality of Fourier’s production of guidance weights.
We also output the feature map of the middle part with the increase in concentration. From
Fig. 8, it can be seen that with the increase in concentration, DFF has richer and more stable
characteristics, and the features after dynamic fusion (DFF) have a clear target structure and do
not show a large contrast. This can not only have good results in the reconstruction process,
but also will not cause overfitting in the subsequent target feature upgrading process, and can
adapt to more changing environments. The DFD features are smoother and not rich enough,
and cannot provide sufficient differentiated information for subsequent high-dimensional feature
extraction to drive network parameter updates, that is, there is no better adaptability to dynamic
changes, especially when the milk concentration increases, the characteristic information begins
to decrease significantly.

Fig. 8. The middle out of DFF and DFD.

3.3. Performance of DPFN on new scenarios

Since the training set was obtained in a laboratory environment, in order to reflect the adaptability
of our method to different scenarios, we changed the type of scattering environment. Specifically,
we collected a separate dataset by photographing outdoor scenes under foggy conditions during
daylight. This foggy dataset was subsequently employed to evaluate the capability of our model,
obtained from the above training, to handle hazy atmospheric environments. From Fig. 9, our
method demonstrates significant dehazing performance. Although the target details are not fully
restored, the main information of the picture is recognizable. This shows that the proposed
method can indeed use polarization information to extract generalized features of the scattering
environment and use Fourier features to effectively adjust dynamic parameters, so that a single
model can be used in different scattering scenarios. In addition, we calculated the PSNR of the
recovered images as shown in Table 4. And, we can also see the high adaptability of our proposed
method to different scenarios from the training set scenarios. These results verify the ability
of the framework we designed to adapt to new scenarios and the possibility of implementing
multiple scenarios with a single framework.

Table 4. The PSNR of the recovery results of the new natural scenes.

a b c d

PSNR 12.2924 13.8639 12.8453 11.2457
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Fig. 9. The recovery results of the new natural scenes.

Naturally, given the limited data, more work will be required to ensure that our method works
in every scattering environment. This is a common issue for the scattering imaging based on the
deep learning algorithm.

4. Conclusion

In this paper, we propose a DPFN to achieve a reasonable selection of polarization characteristics
and utilize a single model to adapt to different extensive scattering conditions. Through the
interaction of encoder, decoder, and GTN, EN’s ability to extract polarization information stability
features and generalize target features can be optimized effectively, so that the DPFN can pay
more attention to the more generalized expression of target features. Furthermore, The GTN is
optimized by utilizing the unique target feature expression method inherent to Fourier features
and the interactive feedback. This allows the GTN to generate polarization feature synthesis
weights in a direction conducive to accurate target reconstruction. Through a series of ablation
experiments, the rationality of our framework as a whole and the superiority of polarization
characteristics are proved well. Our approach offers the possibility of multi-scenario use of a
single network.
Funding. National Natural Science Foundation of China (61775050).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. S. Li, M. Deng, J. Lee, et al., “Imaging through glass diffusers using densely connected convolutional networks,”

Optica 5(7), 803–813 (2018).
2. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through

scattering media,” Optica 5(10), 1181–1190 (2018).
3. S. Zhu, E. Guo, J. Gu, et al., “Imaging through unknown scattering media based on physics-informed learning,”

Photonics Res. 9(5), B210–B219 (2021).
4. Q. Xu, Z. Guo, Q. Tao, et al., “Multi-spectral characteristics of polarization retrieve in various atmospheric conditions,”

Opt. Commun. 339, 167–170 (2015).
5. Q. Xu, Z. Guo, Q. Tao, et al., “Transmitting characteristics of the polarization information under seawater,” Appl.

Opt. 54(21), 6584–6588 (2015).
6. W. Yu, S. Shah, D. Li, et al., “Polarized computational ghost imaging in scattering system with half-cyclic sinusoidal

patterns,” Opt. Laser Technol. 169, 110024 (2024).
7. K. Purohit, S. Mandal, and A. N. Rajagoplan, “Multilevel weighted enhancement for underwater image dehazing,” J.

Opt. Soc. Am. A 36(6), 1098–1108 (2019).
8. B. Huang, T. Liu, H. Hu, et al., “Underwater image recovery considering polarization effects of objects,” Opt. Express

24(9), 9826–9838 (2016).
9. D. Li, C. Xu, M. Zhang, et al., “Measuring glucose concentration in a solution based on the indices of polarimetric

purity,” Biomed. Opt. Express 12(4), 2447–2459 (2021).
10. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into

biological tissue,” Nat. Photonics 9(9), 563–571 (2015).

https://doi.org/10.1364/OPTICA.5.000803
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1364/PRJ.416551
https://doi.org/10.1016/j.optcom.2014.11.065
https://doi.org/10.1364/AO.54.006584
https://doi.org/10.1364/AO.54.006584
https://doi.org/10.1016/j.optlastec.2023.110024
https://doi.org/10.1364/JOSAA.36.001098
https://doi.org/10.1364/JOSAA.36.001098
https://doi.org/10.1364/OE.24.009826
https://doi.org/10.1364/BOE.414850
https://doi.org/10.1038/nphoton.2015.140


Research Article Vol. 32, No. 1 / 1 Jan 2024 / Optics Express 524

11. F. Shen, M. Zhang, K. Guo, et al., “The Depolarization Performances of Scattering Systems Based on Indices of
Polarimetric Purity,” Opt. Express 27(20), 28337–28349 (2019).

12. F. Shen, B. Zhang, K. Guo, et al., “The depolarization performances of the polarized light in different scattering
media systems,” IEEE Photonics J. 10(2), 1–12 (2018).

13. T. Hu, F. Shen, K. Wang, et al., “Broad-band transmission characteristics of Polarizations in foggy environments,”
Atmosphere 10(6), 342 (2019).

14. X. Wang, T. Hu, D. Li, et al., “Performances of polarization-retrieve imaging in stratified dispersion media,” Remote
Sens. 12(18), 2895 (2020).

15. C. Xu, D. Li, K. Guo, et al., “Computational ghost imaging with key-patterns for image encryption,” Opt. Commun.
537(129190), 129190 (2023).

16. C. Xu, D. Li, X. Fan, et al., “High-performance deep-learning based polarization computational ghost imaging with
random patterns and orthonormalization,” Phys. Scr. 98(6), 065011 (2023).

17. X. Ding, Y. Wang, and X. Fu, “Multi-polarization fusion generative adversarial networks for clear underwater
imaging,” Opt. Lasers Eng. 152, 106971 (2022).

18. H. Hu, Y. Zhang, X. Li, et al., “Polarimetric underwater image recovery via deep learning,” Opt. Lasers Eng.
133(23-24), 106152 (2020).

19. Y. Shi, E. Guo, L. Bai, et al., “Polarization-Based Haze Removal Using Self-Supervised Network,” Front. Phys. 9,
789232 (2022).

20. X. Li, H. Li, Y. Lin, et al., “Learning-based denoising for polarimetric images,” Opt. Express 28(11), 16309–16321
(2020).

21. H. Liu, X. Li, Z. Cheng, et al., “Pol2Pol: self-supervised polarimetric image denoising,” Opt. Lett. 48(18), 4821–4824
(2023).

22. H. Hu, H. Jin, H. Liu, et al., “Polarimetric image denoising on small datasets using deep transfer learning,” Opt.
Laser Technol. 166, 109632 (2023).

23. D. Li, B. Lin, X. Wang, et al., “High-Performance Polarization Remote Sensing With the Modified U-Net Based
Deep-Learning Network,” IEEE Trans. Geosci. Remote Sensing 60, 1–10 (2022).

24. B. Lin, X. Fan, and Z. Guo, “Self-attention module in a multi-scale improved U-net (SAM-MIU-net) motivating
high-performance polarization scattering imaging,” Opt. Express 31(2), 3046–3058 (2023).

25. M. Lyu, H. Wang, G. Li, et al., “Learning-based lensless imaging through optically thick scattering media [J],” Adv.
Photonics 1(03), 1 (2019).

26. X. Fan, B. Lin, K. Guo, et al., “TSMPN-PSI: high-performance polarization scattering imaging based on three-stage
multi-pipeline networks,” Opt. Express 31(23), 38097–38113 (2023).

27. Y. Li, S. Cheng, Y. Xue, et al., “Displacement-agnostic coherent imaging through scatter with an interpretable deep
neural network,” Opt. Express 29(2), 2244–2257 (2021).

28. G. G Stokes, Mathematical and physical papers, (Cambridge University, 1901).
29. J. S. T. Yo, M. P. Rowe, and E. N. Pugh, “Target detection in optically scattering media by polarization-difference

imaging,” Appl. Opt. 35(11), 1855–1870 (1996).
30. M. Born, Wolf. Principles of Optics, (Pergamon, New York, 1975, (pp. 665–668)).
31. H. Liu, X. Li, Z. Cheng, et al., “Polarization Maintaining 3-D Convolutional Neural Network for Color Polarimetric

Images Denoising,” IEEE Trans. Instrum. Meas. 72, 1–9 (2023).
32. B. Lin, X. Fan, D. Li, et al., “High-Performance Polarization Imaging Reconstruction in Scattering System under

Natural Light Conditions with an Improved U-Net,” Photonics 10(2), 204 (2023).
33. W. Zhang, X. Li, S. Xu, et al., “Underwater Image Restoration via Adaptive Color Correction and Contrast

Enhancement Fusion,” Remote Sens. 15(19), 4699 (2023).
34. S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE Trans. Neural Netw. Learning

Syst. 23(8), 1177–1193 (2012).
35. F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multi-column deep neural networks with application to robust

image denoising,” In Proc 26th International Conference on Neural Information Processing Systems, 1493–1501
(2013).

36. J. Zhang, J. Shao, J. Chen, et al., “PFNet: an unsupervised deep network for polarization image fusion,” Opt. Lett.
45(6), 1507–1510 (2020).

37. J. D. Laan, D. A. Scrymgeour, S. A. Kemme, et al., “Detection range enhancement using circularly polarized light in
scattering environments for infrared wavelengths,” Appl. Opt. 54(9), 2266–2274 (2015).

38. T. Treibitz and Y. Y. Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3),
385–399 (2009).

39. S. Xu, Y. Xi, W. Liu, et al., “Imaging Dynamics Beneath Turbid Media via Parallelized Single-Photon Detection,”
Adv. Sci. 9(24), e2201885 (2022).

40. Z. Wang, N. Zou, D. Shen, et al., “Non-local u-nets for biomedical image segmentation,” in Proceedings of the AAAI
Conference on Artificial Intelligence 34(04), 6315–6322 (2020).

41. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv,
arXiv:1409.1556 (2014).

42. Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett.
44(13), 800 (2008).

https://doi.org/10.1364/OE.27.028337
https://doi.org/10.1109/JPHOT.2017.2773476
https://doi.org/10.3390/atmos10060342
https://doi.org/10.3390/rs12182895
https://doi.org/10.3390/rs12182895
https://doi.org/10.1016/j.optcom.2022.129190
https://doi.org/10.1088/1402-4896/acd089
https://doi.org/10.1016/j.optlaseng.2022.106971
https://doi.org/10.1016/j.optlaseng.2020.106152
https://doi.org/10.3389/fphy.2021.789232
https://doi.org/10.1364/OE.391017
https://doi.org/10.1364/OL.500198
https://doi.org/10.1016/j.optlastec.2023.109632
https://doi.org/10.1016/j.optlastec.2023.109632
https://doi.org/10.1109/TGRS.2022.3164917
https://doi.org/10.1364/OE.479636
https://doi.org/10.1117/1.AP.1.3.036002
https://doi.org/10.1117/1.AP.1.3.036002
https://doi.org/10.1364/OE.501269
https://doi.org/10.1364/OE.411291
https://doi.org/10.1364/AO.35.001855
https://doi.org/10.1109/TIM.2023.3261929
https://doi.org/10.3390/photonics10020204
https://doi.org/10.3390/rs15194699
https://doi.org/10.1109/TNNLS.2012.2200299
https://doi.org/10.1109/TNNLS.2012.2200299
https://doi.org/10.1364/OL.384189
https://doi.org/10.1364/AO.54.002266
https://doi.org/10.1109/TPAMI.2008.85
https://doi.org/10.1002/advs.202201885
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1049/el:20080522


Research Article Vol. 32, No. 1 / 1 Jan 2024 / Optics Express 525

43. A. Buda, “Life time of correlation between stocks prices on established and emerging markets,” arXiv, arXiv:1105.6272
(2011).

44. J. Liang, L. Ren, H. Ju, et al., “Polarimetric dehazing method for dense haze removal based on distribution analysis
of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).

https://doi.org/10.48550/arXiv.1105.6272
https://doi.org/10.1364/OE.23.026146

